Annual Drinking Water Quality Report January—December 2023

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency EPA) and the Alabama Department of Environmental Management (ADEM) drinking water health standards. Your Local Water officials vigilantly safeguard its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standards

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water source is Well #3 where we have one Iron and Manganese removal plant. Also, we burchase water from the 5-star Water District, who treats water from Lake Jordon. Chlorine is added to he water as disinfectant and the required residual is maintained to protect your drinking water from any possible outside contaminants. Aqua Mag is also added to the water for sequestration of Iron and Manganese and used for corrosion control.

Important Drinking Water Definitions:

Disinfection Byproducts – contaminants formed when chlorine is used as a disinfectant. Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Parts per trillion (ppt) or Nanograms per liter (nanograms/l) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000 Parts per quadrillion (ppq) or Picograms per liter (picograms/l) - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water. Millirems per year (mrem/yr) - measure of radiation absorbed by the body. Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average

Variances & Exemptions - ADEM or EPA permission not to meet an MCL or a treatment technique under certain conditions. Maximum Contaminant Level Goal or MCLG - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level or MCL - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using

the best available treatment technology. Maximum Residual Disinfectant Level Goal or MRDLG - The level of a drinking water disinfectant below which there is no known or expected risk to health MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Maximum Residual Disinfectant Level or MRDL - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants

Variances and Exemptions - The Department or EPA permission not to meet an MCL or a treatment technique under certain conditions Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

Action Level - The concentration of a contaminant that triggers treatment or other requirement a water system shall follow. Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

The Marbury Water System, Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2023. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The Marbury Water System, Inc. utilizes a Bacteriologica Monitoring Plan, and a Cross Connection Policy is in place insure good safe drinking water for our customers. The Mar Water System, Inc. has completed a Source Water Assessment which is available for review at their office. A Source Wat Assessment Plan provides information about potential source contamination and is set up to help protect our source.

Marbury, Alabama 36051 P.O. Box 180 Marbury Water System, Inc.

A MESSAGE FROM THE BOARD

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding. We at The Marbury

MCL's are set at very

stringent levels. To understand the possible

scribed for many regu-

lated contaminants, a

person would have to

drink 2 liters of water

every day at the MCL

level for a lifetime to

chance of having the

described health effect.

have a one-in-a-million

health effects de-

Water System, Inc. work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

John Parks,

System

Water

2

Marbu

President of the Board

General Information

As you can see by the tables, our system had no monitoring violations of allowable limits of contaminants in drinking water. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected.

Total Coliform: The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio. To comply with the stricter regulation, we have increased the average amount of chlorine in the distribution system.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Marbury Water System, Inc. is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

BOARD OF DIRECTORS

John Parks, President **Tyler Kionka Vice-President** Wayne Addison **James Banks Chip Blanton**

	Any Questions?										
ul to	Please attend our regularly scheduled meetings!										
bury t Plan er es of	The 3rd Monday of every quarter at 5:00 p.m. at the Marbury Water Office located at 3056 Hwy 143.										
	Hope to See You There!										
al to bury t Plan er es of	Please attend our regularly scheduled meetings! The 3rd Monday of every quarter at 5:00 p.m. at the Marbury Wa Office located at 3056 Hwy 143. Hope to See You There!										

Table of Primary Contaminants

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or ADEM requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Athgr	n leves s	ome primary	contaminant	is areknowin to pose a neath risks to	o numans.	Ins table pro	ovides a quick g	sance of any primary contaminant deter	dons.					onee per year c							
CONTAMINANT	MCL	Marbury	5-Star	CONTAMINANT	MCL	Marbury	5-Star	CONTAMINANT	MCL	Marbus	ry 5-Star			Table			in a Wate	Contan	alaante		
Dacteriological Tetal Californi Destada	< 40/	ND	ND	The line min mb)	20	ND	ND	Ppicnio io ny drin Other ban mana(na h)	200	ND	ND		1	Tablec			ing wate	Contain		Amount	Likely Source of
To tal Conform Bacteria	< 278 TT	ND	0.01	(hananippo)		ND	ND	Environment (http://www.com/actional.com/	/00	ND	ND	CONTAMINANT	MCLG	MCL		Range		Marbury	5-Star	Detected	Contamination
Fund Californ & E. cali		ND	ND	Organic Chemicals	TT	ND	ND	(has be cate (an b)	200	ND	ND	Tuchiday	0	Bact	teriological	Contaminar	nts Jam	aary - Decen	nber	NTU	Goilsman
Pecar Conform & P. con	0	50	30	A la ch la cín nh.)		ND	ND	(hyphosate(ppb)	700	14.00	11.10	Turrainy		Ra	diological C	iontami nant	s Janua	ary - Decem	- 001	NTD.	201110011
Retainhoton emitters (mem/ar)	4	ND	ND	Atrazine(nnb)	2	ND	ND	Habacetic Acias(ppb)	400	15.00 ND	43.30 ND									1	
Alpha emittars (neif)	15	ND	2.40	Ben mene(p.pb.)		ND	ND	Hentachlor anoridaínat)	200	ND	ND							ND	2.50	1	
Combined radium(nei/I)	4	0.80	0.20	Ban m(a)namana[PUAcVnnt)	200	ND	ND	Harreh broch an man a(n mb.)	200	ND	ND	Alpha emitters	0	1.5						pCi/L	Erosion of natural deposits
Linning ciff)	20	ND	ND	Carbo fumo(nab)	40	ND	ND	Harach lorocruch pan tad ian a(n nh.)	50	ND	ND	Combined Radium 226 & 228	0	5				0.80	0.70	oCi/L	Erosion of natural deposits
(nan namper)	.30	30	70	caroo n an(ppo)	40	ND	ND	Hexacitorocycopentaciene(ppb)	- 20	ND	ND	-		In	organic Co	ntaminants	Januar	y - Decembe	ar .		
Inorganic				Carbon Tetrachlonde(ppb)	5	ND	ND	Lindand(ppt)	200	ND	ND	411							0.77		Discharge from petroleum
Antimony (ppb)	6	ND	0.33	Chlordane(ppb)	2	ND	ND	Methoxychlor(ppb)	40	ND	ND	Antimony	6	6	PaD	-	ND	ND	4.5.5	ppb	ceramics; electronics; solder
Arsenic (ppb)	10	ND	0.54	Chlorobenzene(ppb)	100	ND	ND	Oxamyl [Vydate](ppb)	200	ND	ND	411									Brosion of natural deposits;
Asbestos (MFL)	7	ND	ND	2,4-D	70	ND	ND	Pentachio to pheno l(p pb)	1	ND	ND	411			ND		ND	ND	0.54		nunoff from orchards; nunoff from glass and
Banum (ppm)	2	ND	0.050	Dalapon(ppb)	200	ND	ND	Piclo am(ppb)	500	ND	ND	411			1415		1415		11.04		electronics production
Bery Ihum (ppb)	4	ND	ND	Dibromo chiloropito pan e(ppt)	200	ND	ND	PCBs(ppt)	500	ND	ND	Arsenic	0	10		-				ppb	weaset ets.
Bromate(ppb)	10	ND	ND	0-Dichloio ben zene(pp b)	600	ND	ND	Simazin e(pp b)	4	ND	ND	411									Discharge of drilling wastes;
Cadmum(ppb)	5	ND	ND	p-Dichloio benzen e(ppb)	75	ND	ND	Styrene(ppb)	100	ND	ND			~	ND		ND	ND	0.03		discharge from metal refineries;
Chloramines(ppm)	4	ND	ND	1,2-Dichlozoeth an e(ppb)	5	ND	ND	Tetrachlo to eth ylene(pp b)	5	ND	ND	Harmin	2	2		-				ppm	Water additive used to
Chbrine(ppm)	4	1.82	2.05	1,1-Dichlowethylene(ppb)	7	ND	ND	Toluene(ppm)	1	ND	ND	Chlorine	MRDLG4	MRDL4	1.09	-	1.82	1.82	2.05	ppm	control microbes
Chiorine dioxide(ppb)	800	ND	ND	Cis-L2-Dich loroethylen e(ppb) 70	ND	ND	TOC	TT	ND	1.68										Discharge from steel and pulp
Chiorite(ppm)	1	ND	ND	trans-1,2-Dichloroethylene(ppb)	100	ND	ND	TTHM(ppb)	80	25.60	42.40	Chromium	1.00	100	ND	-	ND	ND	1.10	ppb	deposits
Chaomium (pp b)	100	ND	1.10	Dichloromethane(ppb)	5	ND	ND	To suphene(ppb)	3	ND	ND				No. of 5	lites above ac	tion level				Corrosion of household
Copper (ppm)	AL=13	ND	0.242	1,2-Dichlotopropane(ppb)	5	ND	ND	2,4,5-TP (Silvex)(ppb)	50	ND	ND	411		10 Siles		0		0.20	0.24		plumbing systems; erosion of natural deposits; leaching from
Cyanide (ppb)	200	ND	ND	Di-(2-ethy lhexy hadipate(ppb)	400	ND	ND	1,2,4-Trichlorobenzen@ppb)	70	ND	ND	Copper	1.3	AL-1.3		-	_			lo lo un	wood preservatives
Fluoride (ppm)	4	ND	0.80	Di(2-eth ylhexyl)phthlates(ppl) 6	ND	ND	1,1,1-Trichloroethane(ppb)	200	ND	ND	411					1			7	Water additive which proposes strong test is exprise
Lead (ppb)	AL=15	ND	0.0010	Dinoseb(ppb)	7	ND	ND	1,12-Trichloroethane(ppb)	5	ND	ND	411			ND		ND	ND	0.80		of natural deposits; discharge
Mercury (ppb)	2	ND	ND	Dioxin[2,3,7,8-TCDD](pp.q)	30	ND	ND	Trich loroethy len e(p pb)	5	ND	ND	Ehuorida					1				from fertilizer and aluminum
Nitrate (ppm)	10	0.05	0.113	Diquat(pp b)	20	ND	ND	Vinyl Chloride(ppb)	2	ND	ND	Patterne			No. of 5	tites above ac	tion level			[P]Pati	Corrosion of household
Nitrite (ppm)	1	ND	ND	Endothall(ppb)	100	ND	ND	Xylenes(ppm)	10	ND	ND			10 Sites		0		ND	0.00		plumbing systems, erosion of
Total Nitrate & Nitrite	10	0.05	0.113	Endrin(ppb)	2	ND	ND					L.e.as1	0	AL-15						ppb	natural deposits Runoff from fertilizeruse:
		Tah	le of	bre vrebrood	Unr	elune	tod Co	ntaminants							ND		0.05	0.05	0.11		leaching from septic tanks,
		1 a D	IC UI	Secondary and	Unit	guia		пташшантэ				Nitzate (as. N)	10	10		-				10.1010	sewage; erosion of natural deposits
Secondary Drinking Water Stand	dard s ar	eguidelines	regulating co	ontaminants that may cause cosmetic	effects (s.	uch as skin o	r todih discolor	ation) or aesthetic effects (such as tas	te, odor,	or color } i	in drinking water				1		1	<u> </u>	l		Runoff from fertilizer use;
ALEM has Secondary Drinking water	r Standar Inde The	os establism	kod in statere Luoroogulated	equations applicable to water system	is required DA la dataa	to monitor to	r the various co	reponents. Un regulated contaminar	ntsaret . and w b	nose for w	vnich EPA nas r	e			ND		0.05	0.05	0.11		leaching from septic tanks,
established onneing water standa	ards. The	e purpose or	unreguiated	contaminant monitoring is to assiste	PA in deten	mining the oc	curance of unr	eguated contaminants in drinking water	rand win	eoner rucu	re regulation is	Total Nitrate & Nitrite	10	10		-				p pun	deposits
CONT 13 (0) 137	3.677	36.3	5.0	0000743.0004327	3.007	36.3	5.0.	0002713 0023327	3.007	36.3	5.0.	-			organic Con	taminants	Januar	y - Decemie	ar -		
CONTANINANI	AB-L	ABIDELY	2-9141	CONTAMDANT	AB-L	ABIDELY	2-9101	CONTAMENANT	ARL	ALSEDE	N 2-3 BT	Haloacetic Acids (HAA5)	0	60	8.70	-	18.00	15.00	42.40	ppb	By-product of drinking water chlorination
A huminum	0.2	ND	22.10	Economica A comite	ocondary 0.5	ND	ND	Silvar	- 2	ND	ND				5.05	1	5.05	5115	1.62	1.1	Naturally present in the
Alumbum Chh-ite	0.2	2.40	22.10	Foarming A gen is	0.5	ND	ND	Saver		ND	20.20	Total Organic Carbon (TOC)) N/A	.1.1.	ND	-	ND	ND	1.05	.L.L.	environment
Cabr(PC1)	250	3.20	2.25 ND	Magn grin m	25	ND	479	Sumite Total Directure Solide	500	ND	20.30	(TTHM)	0	80	19.00	-	40.00	25.60	45.50	ppb	water chlorination
Comr	15	0.018	8,200	Odar(T.O.N.)	/5	ND	4./9 ND	Total Dissolved Solids	500	ND	24.70	-	12	5	econdary Ca	ontaminants	Januar	ry - Decembe	ALL.	14115	
coppe		0.018	8.700	0401(13334)	2	740	ND	2.05	3	ND	0.68										Brosion of natural deposits
Colorina	NI/A	16.00	24.20	-11/210	special	ND	610	Torrestore (BC)	N/ A	ND	60.20	A huminum	N/A	0.2	ND	-	ND	ND	0.02	ppm	with water additives
Calcium Calcium	N/A N/A	16.00	2420	pH(SU)	N/A N/A	ND	0.10	Temperature (* C.)	NA	ND	60.20										Naturally occurring in the
Carbon Diode	N/A 0.04	0.012	49.50	Society Construction on fourth on	N/A	ND	3./0	Total Alkanony	NA	ND	36.00	Chloride	N/A	2.50	ND	-	ND	ND	5.33	ppm	environment or as a result of agricultural pur off
Manganese	0.05	0.012	0.008	specific Conductance (unnos	1 <300	ND	166.00	Total Hardness (as Cac.(b)	NA	ND	/9.90										or appreciation in terrest
1.1.0531	2017	1.02	200	Us Ca	regulated	1.0	200	the share have been from	2.07.8			Copper	N/A	1	ND	-	ND	ND	0.17	ppm	Erosion of natural deposits;
1,1 - Dichioropilo pene	N/A N/A	ND	ND	Bromoo enzen e	N/A N/A	ND	ND	Hexach loroo utadiene	NA	ND	ND		51/ 5	0.08	5.05		5.05	5.05	0.01		leaching from pipes
1,12,2-Terraciioroctiane	NUA	ND	ND	Deserved is blow methods a	NUA	ND	0.21	M Diablam banama	NEA	ND	ND	NT agries auto	N/A	0.05	PaD	-	ND	ND	(10)	ppm	Naturally occurring in the
1,1-Dichiologinane	N/A.	ND	ND	Deserve for me	N/A N/A	ND	921	M-Dichiolo benzene	N/A	ND	ND	Shallfaile	N/A	2.50	ND	-	ND	ND	20.30	ppm	en viro om ent
1,2,3 - Then lorob en zene	N/A N/A	ND	ND	Bromoto Im	N/A N/A	ND	ND	M da hah laa	N/A N/A	ND	ND	T of al D issolved Solids	N/A N/A	.500	ND	-	ND	ND	24.70	ppm	Brosion of natural deposits
1,2,5 - Then lorop to pane	N/A N/A	ND	ND	Bromometnane	N/A N/A	ND	ND	Meto Benior	NA	ND	ND	2.015	19775	-2	Special Co	ntami nants	January	- December	11111	171711	interest of that that the poster
1,24 - Thmeth yib enzene	N/A	ND	ND	Butachior	N/A	ND	ND	M diribuzin	NA	ND	ND	Cakium	N/A	N/A	ND	-	ND	ND	40.30	ppm	Erosion of natural deposits
1.2.4-11°C n forob enzeñ e	N/A	ND	ND	Carbaryi	N/A	ND	ND	M TBE	NA	ND	ND	Carbon Dioside	N/A	N/A	ND	-	ND	ND	49.30	ppm	Prosion of natural deposits
1.5 - Dich lorop to paine	N/A	ND	ND	Chlorodinane	N/A	ND	ND	N - Buty Ibenzene	NA	ND	ND	Manganese	N/A	N/A	ND	-	ND	ND	0.01	ppm	Naturally occurring in the
1,3 - Dich lorop io pen e	N/A	ND	ND	Chlorod ibromomethane	N/A	ND	ND (2.20)	Naph thalen e	NA	ND	ND		NZA	NZA	ND		ND	ND	7.20	51.1	environment or as a result
1,52 - Timein yibenzene	N/A	ND	ND	Chloromotharra	N/A	ND	53.20 ND	A rio py ioenzene	NA	ND	ND					_					of treatment with water additives
2,2- Dich lorop to pan e	N/A	ND	ND	C.n torometin ane	N/A	ND	ND	O-Chilorotolijene	NA	ND	ND										Naturally occurring in the
3-Hy droxy carb ofturan	N/A	ND	ND	Dibromo ch lorometh ane	N/A	ND	129	P-Ch lorotoluen e	NA	ND	ND	Sodium	N/A	N/A	ND	-	ND	ND	3.60	ppm	en vironm ent
Aldicarb	N/A	ND	ND	Dibromo methane	N/A	ND	ND	P-Iso prop yitolu ene	NA	ND	ND	411					1			1	Naturally occurring in the environment or as a result
Aldicarb Sulfone	N/A	ND	ND	Dichloro diffu oromethane	N/A	ND	ND	Propachior	NA	ND	ND	Specific Conductance	N/A	-2500	ND	-	ND	ND	166.00	umbos	of treatment with water
Aldicarb Sulfoode	N/A	ND	ND	Dieldrin	N/A	ND	ND	Sec - Butylbenzene	NA	ND	ND	-411									additives
Aldrin	N/A	ND	ND	Fluorotrich lorometh an	N/A	ND	ND	Teit - Butylbenzene	NA	ND	ND	Temperature	N/A	N/A	ND	-	ND	ND	60.20		Naturally occurring in the environment
												Total Alkalinity	N/A	N/A	ND	-	ND	ND	56.00	ppm	Erosion of natural deposits
				PEA	S Campa	unds															Naturally occurring in the
CONTANUNANT	DEC		ume o	VOALTA MINIA NOT	DECLUT	10		NITE CONTANIANT		DESI	TO INTO	Total Handness (as CaCO-3)	N/A	N/A	ND	-	ND	ND	79.90	ppm	of treatment with water
CONTAMINANT	PRES	suris u	VIIS U	AUN DAMINANI	RESULI	3		UNITS CONTAININGANT		REAL	LISUNIS										additives
11CI-PF3OUdS	BM	RL uq	/L P	Verifiuaradecaniaic Acid	BMRL			.g/L Perfuorooctanoic Acie	d	0	.016 ug/L		1	Un	regulated C	ontaminant	s Janu	ary - Decemi	NOT:	1	Naturally preserving in the
9CLP EXONS	RM	R un		Acid			0.018	n] Perfurentetradecarrie	Acid	BMP	ling		1		1	1	I			1	environment or as a result of
100110	DW D	nu 0,	- F		-		0.0101	ALC FORMULATION	1.1.1	D WPL	. ugit	Bromodichloromethane	N/A	N/A	ND	-	ND	ND	9.21	ppb	industrial discharge or
ALIONA	BM	KL ug	VL P	remularadadec analic Acid	BMRL		L	Igr. Pertuorotridecanoic A	cid	RWK	. ug/L		1		1	1	1			1	of chlorination
HEPO-DA	BM	RL ut	/L P	enfluoroheotanoic Acid			0.0054	.gL Perfuoroundecanoic /	Acid	BMR	. ual										Naturally occurring in the
NEIEOSAA	RM	RI un		aduanhaanaa dhair. Acid	BMR			rol Total DEAr		0	092 up1	Chloreform	NZA	NZA	ND	-	ND	ND	53.20	pph	environment or as a result of industrial discharge or
AND DOOR A	DIVI	ne 00	<u>-</u>	ana arang sana sana na sana	DA LET			ALC: INSTITUTE		0	.use uge					-				1910	agricultural runoff; by -product
NMeFOSAA	BM	KL ug	VL P	entuaranananaic Acid	BMRL		L	igit.			ug/L										of chlorination Naturally occarring in the
Deelle marche dannes d'Annie Anie	d	0.085.00	/ 0	And unmost some ultrain Anid			0.022	al			ual	Dibromochloromethane	N/A	N/A	ND	-	ND	ND	1.29	ppm	environment